

Yahboom Building:bit MicroPython API

Input this code to import Yahboom building:bit Micropython library: import buildingbit

1. Car advance buildingbit.car_run(L_Speed, R_Speed, delay)

Description of Parameter:

L_speed is left motor speed,range is 0-255.

 R_speed is right motor speed, range is 0-255.

delay is delay time(ms)

Eg: buildingbit.car_run(255, 255, 1000) // The car will advance 1000ms with 255 speed

2. Car back buildingbit.car_back(L_Speed, R_Speed, delay)

Description of Parameter:

L speed is left motor speed, range is 0-255.

R_speed is right motor speed,range is 0-255.

delay is delay time(ms)

Eg: buildingbit.car_back(255, 255, 1000) // The car will back 1000ms with 255 speed

3. Car turn left buildingbit.car_left(Speed, delay)

Description of Parameter:

speed is right motor speed, range is 0-255.

delay is delay time(ms)

!Note: car turn left is left wheel stop and right wheel advance,so we only input right speed.

Eg: buildingbit.car left(255, 1000) // The car will turn left 1000ms with 255 speed

4. Car turn right buildingbit.car_right(Speed, delay)

Description of Parameter:

speed is left motor speed, range is 0-255.

delay is delay time(ms)

!Note: car turn right is right wheel stop and left wheel advance,so we only input left speed.

Eg: buildingbit.car_right(255, 1000) // The car will turn right 1000ms with 255 speed

5. Car spin left buildingbit.car spinleft(L Speed, R Speed, delay)

Description of Parameter:

L speed is left motor speed, range is 0-255.

R speed is right motor speed, range is 0-255.

delay is delay time(ms)

Eg: buildingbit.car spinleft(255, 255, 1000) // The car will spin left 1000ms with

255 speed

6. Car spin right buildingbit.car_spinright(L_Speed, R_Speed, delay)

Description of Parameter:

L speed is left motor speed, range is 0-255.

R_speed is right motor speed,range is 0-255.

delay is delay time(ms)

Eg: buildingbit.car_spinright(255, 255, 1000) // The car will spin right 1000ms with 255 speed

7、Car stop buildingbit.car_stop()

8、RGB search light buildingbit.car_HeadRGB(R_value, G_value, B_value)

Description of Parameter:

R value is red value, range is 0-255.

G value is green value, range is 0-255.

B value is blue value, range is 0-255.

Eg: buildingbit.car_HeadRGB(255, 255, 255) // The RGB search light will become white

9. Ultrasonic module return distance buildingbit.ultrasonic()

This function returns the current distance detected by the ultrasonic module(cm).

Return value: if there are obstacles returns true, if there are no obstacles return false

! Note: When using this function, you must turn off the dot-matrix display, otherwise pin reuse will cause conflicts, and the method of turning off dot-matrix display: microbit.display.off ()

11. Left tracking sensor buildingbit.traking_sensor_L()

Return value: if black lines are detected returns true(Indicator light is off), if white lines are detected return false(Indicator light is on).

12 Left tracking sensor buildingbit.traking_sensor_R()

Return value: if black lines are detected returns true(Indicator light is off), if white lines are detected return false(Indicator light is on).

13 Servo control buildingbit.servo(num, angle)

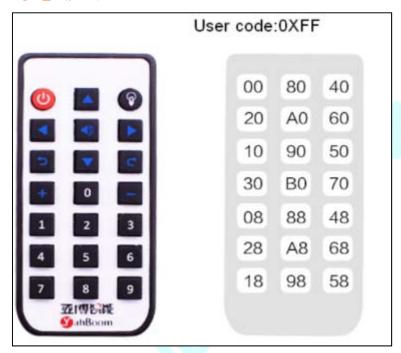
Description of Parameter:

num is number of servo(1-3)

angle is angle of servo, range is 0-180.

Eg: buildingbit.servo(1, 180) // No.1 servo will rotate to 180°

14、IR control buildingbit.init_IR(IR_pin)


Description of Parameter:

IR_pin is Pins connected to the infrared receiver. For building:bit, we need to select pin8 Eg: buildingbit.init_IR(pin8)

15 Return button value of IR controller buildingbit.get_IR(IR_pin)

Description of Parameter:

IR_pin is Pins connected to the infrared receiver. For building:bit, we need to select pin8 Eg: buildingbit.get_IR(pin8)

